Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An overview of the apple genome through BAC end sequence analysis.

Identifieur interne : 003994 ( Main/Exploration ); précédent : 003993; suivant : 003995

An overview of the apple genome through BAC end sequence analysis.

Auteurs : Yuepeng Han [États-Unis] ; Schuyler S. Korban

Source :

RBID : pubmed:18521706

Descripteurs français

English descriptors

Abstract

The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.

DOI: 10.1007/s11103-008-9321-9
PubMed: 18521706


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An overview of the apple genome through BAC end sequence analysis.</title>
<author>
<name sortKey="Han, Yuepeng" sort="Han, Yuepeng" uniqKey="Han Y" first="Yuepeng" last="Han">Yuepeng Han</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korban, Schuyler S" sort="Korban, Schuyler S" uniqKey="Korban S" first="Schuyler S" last="Korban">Schuyler S. Korban</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18521706</idno>
<idno type="pmid">18521706</idno>
<idno type="doi">10.1007/s11103-008-9321-9</idno>
<idno type="wicri:Area/Main/Corpus">003870</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003870</idno>
<idno type="wicri:Area/Main/Curation">003870</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003870</idno>
<idno type="wicri:Area/Main/Exploration">003870</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An overview of the apple genome through BAC end sequence analysis.</title>
<author>
<name sortKey="Han, Yuepeng" sort="Han, Yuepeng" uniqKey="Han Y" first="Yuepeng" last="Han">Yuepeng Han</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korban, Schuyler S" sort="Korban, Schuyler S" uniqKey="Korban S" first="Schuyler S" last="Korban">Schuyler S. Korban</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosomes, Artificial, Bacterial (MeSH)</term>
<term>DNA Transposable Elements (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Malus (genetics)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Physical Chromosome Mapping (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Retroelements (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cartographie physique de chromosome (MeSH)</term>
<term>Chromosomes artificiels de bactérie (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Malus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Rétroéléments (MeSH)</term>
<term>Éléments transposables d'ADN (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Transposable Elements</term>
<term>Retroelements</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Malus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Artificial, Bacterial</term>
<term>Genome, Plant</term>
<term>Microsatellite Repeats</term>
<term>Physical Chromosome Mapping</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Cartographie physique de chromosome</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Génome végétal</term>
<term>Répétitions microsatellites</term>
<term>Rétroéléments</term>
<term>Éléments transposables d'ADN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18521706</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>67</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>An overview of the apple genome through BAC end sequence analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>581-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-008-9321-9</ELocationID>
<Abstract>
<AbstractText>The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Korban</LastName>
<ForeName>Schuyler S</ForeName>
<Initials>SS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018626">Retroelements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="Y">Chromosomes, Artificial, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020161" MajorTopicYN="N">Physical Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018626" MajorTopicYN="N">Retroelements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18521706</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-008-9321-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2000 May;12(5):637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10810140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Feb 18;6:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2007 Aug;90(2):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Dec;132(4):1141-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1360934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Aug 03;8:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Sep;144(1):329-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8878696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Sep;41(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10561065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1686-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Dec;162(4):1995-2006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jun;10(6):789-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Apr;114(6):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Jul;18(7):1161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11420357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2005 Oct;48(5):924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 May;3(5):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformation. 2005 Nov 22;1(2):64-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17597856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1985 Dec;71(2):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Dec;44(6):1104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11768214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 25;22(23):4922-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7800481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(2):233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2007 May;89(5):630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17270394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Jul;22(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Mar-Apr;48(5-6):463-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12004892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 May 30;381(6581):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8632789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Mar;7(3):525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7757120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003 Mar;56(3):362-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 May;275(5):479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16501995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Aug;13(8):1966-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jul;10(7):967-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1093-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 May;108(7):1392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14968301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9739-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jul;276(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Dec;14(4):380-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2002 Dec 31;9(6):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12597276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):147-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Jun 11;7:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Korban, Schuyler S" sort="Korban, Schuyler S" uniqKey="Korban S" first="Schuyler S" last="Korban">Schuyler S. Korban</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Han, Yuepeng" sort="Han, Yuepeng" uniqKey="Han Y" first="Yuepeng" last="Han">Yuepeng Han</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003994 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003994 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18521706
   |texte=   An overview of the apple genome through BAC end sequence analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18521706" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020